Chem. Ber. 109, 3441-3445 (1976)

Schwefel-Sauerstoff-Verbindungen, 28¹⁾

Röntgenstrukturanalyse von Ammonium-tetraschwefelpentanitridoxid, $NH_4[S_4N_5O]$

Peter Luger*), Hans Bradaczek*) und Ralf Steudel**)*

Institut für Kristallographie der Freien Universität Berlin, Takustraße 6, D-1000 Berlin 33^{*)}, und Institut für Anorganische und Analytische Chemie der Technischen Universität Berlin, Straße des 17. Juni 135, D-1000 Berlin 12^{**)}

Eingegangen am 3. März 1976

 $NH_4[S_4N_5O]$ kristallisiert in einem monoklinen Gitter der Raumgruppe C2/m mit 4 Molekülen in der Elementarzelle und starken intermolekularen NHN- und NHO-Wasserstoffbrücken. Anionen und Kationen besitzen die Symmetrie C_s, die mittleren Kernabstände betragen d_{NH} = 1.01, d_{SN} = 1.619, d_{SO} = 1.433, d_{SS} = 2.632 Å. Die Struktur des Anions leitet sich vom Käfig des S₄N₄ durch Ersatz einer SS-Bindung durch eine S – N – S-Brücke ab, wobei eines der Brückenkopfatome zusätzlich ein Sauerstoffatom trägt.

Sulfur Oxygen Compounds, 281)

X-Ray Structure Analysis of Ammonium Tetrasulfur Pentanitride Oxide, NH4[S4N50]

 $NH_4[S_4N_5O]$ crystallizes in a monoclinic lattice of space group C2/m with 4 molecules in the unit cell. Both ions are of symmetry C_s with average bond distances $d_{NH} = 1.01$, $d_{SN} = 1.619$, $d_{SO} = 1.433$, and $d_{SS} = 2.632$ Å. The structure of the anion can be derived from the S_4N_4 cage molecule by substituting one sulfur-sulfur bond by a S - N - S bridge with an additional terminal oxygen atom at one of the bridge head atoms.

 $NH_4[S_4N_5O]$ kann durch Reaktion von Thionylchlorid mit flüssigem Ammoniak und anschließende Hydrolyse der Reaktionsprodukte in Form gelber, prismenförmiger Kristalle dargestellt werden²⁾. Der salzartige Aufbau der Verbindung wurde durch Leitfähigkeitsmessungen und Kationenaustausch nachgewiesen sowie durch die Zuordnung aller Normalschwingungen des Ammonium-Ions im IR-Spektrum der festen Verbindung²⁾. Da die IR- und Massenspektren der bis über 100°C beständigen Verbindung auf eine dem Tetraschwefeltetranitrid ähnliche Käfigstruktur des Anions hinwiesen, die durch ungewöhnliche Bindungsverhältnisse ausgezeichnet ist³⁾, haben wir eine Röntgenstrukturanalyse durchgeführt.

¹⁾ 27. Mitteil.: P. Luger, H. Bradaczek, R. Steudel und M. Rebsch, Chem. Ber. 109, 180 (1976).

²⁾ R. Steudel, Z. Naturforsch., Teil B 24, 934 (1969); vgl. auch R. Steudel und P. W. Schenk in G. Brauer, Handbuch der Präparativen Anorg. Chemie, 3. Aufl., Bd. 1, S. 486, F. Enke, Stuttgart 1975.

³⁾ R. Steudel, Angew. Chem. 87, 683 (1975); Angew. Chem., Int. Ed. Engl. 14, 655 (1975).

Bestimmung und Verfeinerung der Struktur

Raumgruppe und vorläufige Gitterkonstanten wurden aus Drehkristall- und Weissenberg-Aufnahmen bestimmt. Neben monokliner Intensitätssymmetrie konnte nur die integrale Auslöschung hkl für h + k = 2n + 1 beobachtet werden, woraus sich die möglichen Raumgruppen Cm, C2 und C2/m ergaben. Da experimentell ermittelte und berechnete Dichte bei einem Zellinhalt von 4 Formeleinheiten übereinstimmten, wurde zunächst den beiden azentrischen Raumgruppen Cm und C2 der Vorzug gegeben.

Genaue Gitterkonstanten und die Intensitäten im Θ -Bereich 2.4° < Θ < 30° wurden auf einem Siemens-Vierkreis-Diffraktometer mit Zr-gefilterter Mo- K_a -Strahlung gemessen. Die ermittelten Kristalldaten lauten:

Gitterkonstanten a = 17.848(5), b = 6.232(4), c = 7.095(4) Å, $\beta = 104.83(4)^\circ$, Zellvolumen V = 763 Å³, Dichte $\rho_x = 2.01$ g/cm³, experimentell nach der Schwebemethode ermittelte Dichte⁴) $\rho = 1.96$ g/cm³, linearer Absorptionskoeffizient $\mu = 11.5$ cm⁻¹ für Mo-K_a-Strahlung ($\lambda = 0.7107$ Å).

Von den 1207 nach der 5-Wert-Methode vermessenen Reflexintensitäten wurden 82, deren Beträge kleiner als die doppelten statistischen Fehler waren, als unbeobachtet eingestuft. Nachdem die Verteilung der normierten Strukturfaktoren eindeutig auf das Vorliegen eines Symmetriezentrums hinwies, wurde die Phasenbestimmung in der Raumgruppe C2/m versucht. Hierzu wurde die Multilösungsmethode unter Benutzung der Programme SIGMA 2 und PHASE des X-RAY 67-Programmsystems⁵⁾ angewandt. Nach Vorgabe von drei variablen Reflexen konnte aus einer der 8 resultierenden E-Fourier-Synthesen das $S_4N_5O^-$ -Anion erkannt werden, das die Symmetrie C_s besitzt. Das ebenfalls auf der Spiegelebene liegende NH⁺₄-Kation wurde dann in darauf bestimmten Differenz-Fourier-Synthesen ermittelt.

Die Verfeinerungen nach der Methode der kleinsten Quadrate wurden für die Wasserstoffatome mit isotropen und für alle anderen Atome mit anisotropen Temperaturfaktoren durchgeführt. Nach Konvergenz aller Parameter betrug der R-Wert $(R = \Sigma ||F_h^o| - |F_h^c||/\Sigma |F_h^o|)$ 4.9 %.

Ergebnisse⁶⁾ und Diskussion

In der Abbildung ist eine halbe Elementarzelle dargestellt, aus der die andere Hälfte durch Spiegelung an einem der Inversionszentren erzeugt werden kann. Die Atomkoordinaten, Kernabstände und Valenzwinkel sind in den Tabellen 1-4 angegeben.

Die Kristallstruktur von $NH_4[S_4N_5O]$ besteht aus isolierten NH_4^+ - und $S_4N_5O^-$ -Ionen, die jedoch durch ein System von Wasserstoffbrücken dreidimensional miteinander verknüpft sind. Seitens des Kations sind drei der vier H-Atome an diesen Brücken beteiligt, und zwar ist eines an das O-Atom des benachbarten Anions gebunden (Brückenbindungslänge 1.95 Å), während zwei an die N2-Atome zweier weiterer Anionen in benachbarten Zellen gebunden sind (Brückenbindungslängen 1.94 Å). Alle drei Wasserstoffbrücken sind unsymmetrisch; die Winkel OH1N4, N2H2N4 und H1OS1 betragen 180(3)°, 166(6)° bzw. 106(2)°. Die H-Brücken haben zur Folge, daß die Symmetrie des Kations von T_d im freien Zustand auf C_s erniedrigt wird (NH-Kernabstände 0.93 – 1.04 Å, Winkel HNH 82 – 128°). Das nicht an einer Wasserstoffbrücke beteiligte Atom H3 besitzt ein N1-Atom eines vierten benachbarten Anions als nächsten Nachbarn, jedoch ist der Abstand H3 – N1 mit 2.38 Å

⁴⁾ R. Steudel und F. Rose, unveröffentlichte Ergebnisse.

⁵⁾ Program System for X-Ray Crystallography, Technical Report 67-58, Computer Center, University of Maryland 1967.

⁶⁾ Vorläufige Mitteil.: R. Steudel, P. Luger und H. Bradaczek, Angew. Chem. 85, 307 (1973); Angew. Chem., Int. Ed. Engl. 12, 316 (1973).

Abb.: Halbe Elementarzelle von NH₄[S₄N₅O]; die andere Hälfte kann durch Spiegelung an einem der eingezeichneten Inversionszentren erzeugt werden. Die von den Ionen ausgehenden Wasserstoffbrücken sind gestrichelt gezeichnet; ebenso die schwache SS-Bindung im Anion

Tab. 1: Atomparameter, Tab. 2: Intramolekulare Abstände (in Å), Tab. 3: Valenzwinkel (in Grad) von NH₄[S₄N₅O], (Standardabweichungen jeweils in Klammern).Die Temperaturfaktoren sind gegeben durch T (anisotrop) = exp $\left[-2\pi^{2}(U_{11} \cdot h^{2} \cdot A^{*2} + U_{22}k^{2}B^{*2} + U_{33}l^{2}C^{*2} + 2U_{12}hkA^{*}B^{*} + 2U_{13}hlA^{*}C^{*} + 2U_{23}klB^{*}C^{*}\right]$ T (isotrop) = exp $\left[-2\pi^{2}U(2\sin\Theta/\lambda)^{2}\right]$

tom	x		Y	z	100-U	100-U 2	2 ^{100-U} 33	100·U	100·U	100	·U23
SI	0.352	2(1)	0.0000(0)	0.8729(1)	2.44(5)	4.53(7)	1.66(4)	0.0 (0)	0.79(3)	0.0	(0)
S 2	0.450	1(1)	0.2111(1)	0.7141(1)	4.52(5)	3.60(6)	3.35(4)	-1.24(4)	1.72(3)	-0.2	5(3)
53	0.326	H(1)	0.0000(0)	0.4785(Z)	3.61(6)	5.94(9)	1.51(5)	0.0 (0)	0. 39(4)	0.0	(0)
NI	0.408	1(2)	0. 2025(5)	0.8927(6)	4.4 (2)	4.0 (2)	3.1 (1)	-0.4 (1)	1.5 (1)	-1.4	(1)
N2	0.388	(2)	0.2010(5)	0.5056(4)	5.4 (2)	4.4 (2)	3.2 (1)	0.Z (1)	1.3 (1)	1.4	(1)
N3	0.289	5(Z)	0.0000(0)	D. 6704(6)	Z.4 (2)	7.2 (3)	2.4 (2)	0.0 (0)	0.6 (0)	0.0	(0)
N4	0.144	I (2)	0.0000(D)	0.8291(6)	3.2 (Z)	3.4 (2)	2.5 (Z)	0.0 (0)	1.0 (1)	0.0	(0)
0	0.313	2(Z)	0.0000(0)	1.0262(5)	3.7 (2)	9.6 (3)	2.3 (Z)	0.0 (0)	1.7 (1)	0.0	(0)
H1	0.203	(4)	0.000 (0)	0.898 (8)	1.0 (1)						
нs	0.124	(4)	0.110 (9)	0.717 (9)	6.0 (2)						
нз	0.135	(6)	0.000 (0)	0.95 (1)	6.0 (3)						
Tat	<u>. 2</u>										(0.0
N4 -}	41	1.0	4 (0.06)	52		1.631 (0.003}	51-	-52	2,058	(0.0
N4 1	12	1.0	4 (0.06)	52	-N2	1.604 ((0.003)	52-	- 5 3	2. (9)	(0.0
N4	13	0.9	3 (0,11)	33	-N2	1.650 ((0.004)	N1-	- 142	2.010	(0.0
51-0			33(0.004)	33	-03	1.057 ((0.005)	N1-	- N2	2.929	10.0
sı-r			79(0.00%)	54	-52	2.032	(0.007)	NL-	- 112	2,505	(0.0
51-1	• 1	1.5	93 (0. 003)	31	-33	6. (11)	(0.002)	N2-	-N3	2. 667	(0.0
Tal	b. 3				-						
OSIN	3	108	. 8 (0.2)	N	IS 2N2	111.8 ((0. 2)	HIN	4H2	118	(4)
OSIN	1	110	.3 (0.1)	52	2N2S 3	114.8 ((0, 2)	HIN	4H3	88	(7)
N151	N3	111	.3 (0,1)	S	N35 3	114.2 ((0.3)	H2N	14H 2	8 Z	(4)
NIST	NI	104	.8 (0.2)	N	3S 3N2	107.5 ((0.1)	HZN	1 4 H3	128	(5)
SINIS	12	1.1	1 (0.2)	N	2S 3NZ	98.8	(0. 2)				

C #2/76. Teb. 1-3

Atom 1	Atom 2	Kernabstand (in Å)	Symmetrieoperation		
0	S3	3.157(0.004)	x, y, 1 + z		
	H1	1.95(0.06)	x, y, z		
NI	H3	2.38(0.07)	$\frac{1}{2} - x, \frac{1}{2} - y, 2 - z$		
	N4	3.024(0.005)	$\frac{1}{2} - x, \frac{1}{2} - y, 2 - z$		
	S 2	3.252(0.003)	1 - x, y, 2 - z		
N2	H2	1.94(0.06)	$\frac{1}{2} - x, \frac{1}{2} + y, 1 - z$		
	N4	2.957(0.004)	$\frac{1}{2} - x, \frac{1}{2} + y, 1 - z$		

Tab. 4. Kürzeste intermolekulare Abstände in NH₄[S₄N₅O] (Abstände <2.5 Å für NH, OH, SH; <3.1 Å für OO, ON; <3.3 Å für SN, SO; <3.5 Å für SS; Standardabweichungen in Klammern)

nur wenig kleiner als der van-der-Waals-Abstand (2.6-2.8 Å). Obwohl bekannt ist, daß die Genauigkeit der röntgenographischen Bestimmung von Wasserstoffatomlagen begrenzt ist, halten wir die Abweichung der Kationengeometrie von der idealen T_d -Symmetrie für real, da sie sich auch im Auftreten der symmetrischen Deformationsschwingung v_2 der Rasse E im IR-Spektrum in Form einer schwachen Bande zeigt, obwohl diese Schwingung in der Punktgruppe T_d IR-inaktiv ist. Beim Ag[S₄N₅O] fehlt eine Absorption in diesem Bereich, d. h. es handelt sich nicht um eine Schwingung des Anions^{2, 7)}.

Die Struktur des Anions leitet sich von der des Tetraschwefeltetranitrids ab, das bei der Reaktion von Thionylchlorid mit flüssigem Ammoniak ebenfalls entsteht. Im S_4N_4 sind die quadratisch angeordneten N-Atome über S-Atome miteinander verbunden, die sich an den Ecken eines Bisphenoids befinden, und die abwechselnd oberhalb und unterhalb des Quadrates liegen, wobei außerdem noch zwei außergewöhnlich lange SS-Bindungen (an den zwei kurzen Kanten des Bisphenoids) vorhanden sind⁸⁾. Dieses S_4N_4 -Gerüst ist im $S_4N_5O^-$ -Anion deutlich zu erkennen (Atome S1, S2, S3, N1, N2), jedoch enthält das Anion zusätzlich am Atom S1 ein exoständiges O-Atom und ein die Atome S1 und S3 verbindendes N-Atom (N3), so daß das S-Atom 1 nahezu tetraedrisch koordiniert ist (Valenzwinkel am S1: 104.8-111.3°).

Die Abstände d_{SO} und d_{SN} sind alle sehr viel kleiner als entsprechende Einfachbindungen. Beispielsweise entspricht der SO-Abstand mit 1.433 Å denen im SO₂ (1.43 Å), SO₃ (1.42 Å), SOF₂ (1.41 Å), SOF₄ (1.42 Å) und SO₂F₂ (1.43 Å) und ist damit deutlich kleiner als etwa in Sulfaten (1.48–1.53 Å), aber vergleichbar denen in Amidosulfaten (1.42–1.45 Å)⁹⁾. Die SN-Abstände liegen im S₄N₅O⁻ zwischen 1.579 und 1.657 Å und entsprechen damit denen im S₄N₄ (1.596–1.634 Å⁸⁾), wobei die Mittelwerte (1.616 bzw. 1.619 Å) praktisch identisch sind.

Die fünf N-Atome des $S_4N_5O^-$ -Ions bilden eine vierseitige Pyramide der Symmetrie C_s , deren Basisfläche aber nur wenig von einem Quadrat verschieden ist (Kantenlängen 2.505 – 2.678 Å). Die vier S-Atome befinden sich ungefähr an den Ecken eines Tetraeders, dessen Kantenlängen mit 2.632 – 2.741 Å viel kleiner als der van-der-Waals-Abstand zweier S-Atome (3.4 – 3.6 Å³) sind. Eine SS-Bindung kann jedoch nur zwischen den S2-Atomen angenommen werden, deren Bindungszustand dem der S-Atome im S₄N₄

 ⁷⁾ DMS-Kartei Nr. A 1272 und A 1273, Verlag Chemie, Weinheim, und Butterworths, London.
⁸⁾ B. D. Sharma und J. Donohue, Acta Crystallogr. 16, 891 (1963).

⁹⁾ A. J. Banister, L. F. Moore und J. S. Padley in G. Nickless, Inorganic Sulphur Chemistry, S. 137, Elsevier Publ. Comp., Amsterdam 1968.

entspricht. Damit übereinstimmend beobachtet man im Raman-Spektrum des kristallinen S_4N_4 im Bereich 100 – 300 cm⁻¹ nur zwei sehr starke Linien bei 200 und 217 cm⁻¹, die als SS-Valenzschwingungen der Rassen A₁ und B₂ zuzuordnen sind¹⁰⁻¹²), während beim NH₄[S₄N₅O] im gleichen Bereich nur eine starke Raman-Linie bei 222 cm⁻¹ auftritt⁴), die auch hier als SS-Valenzschwingung der Rasse A' zuzuordnen ist. In beiden Fällen handelt es sich um charakteristische, d. h. nahezu ungekoppelte Schwingungen¹²). Die Kernabstände der SS-Bindungen im S₄N₄ und im NH₄[S₄N₅O] sind mit 2.581 bzw. 2.632 Å vergleichbar.

Für die starken Ähnlichkeiten zwischen S_4N_4 und $NH_4[S_4N_5O]$ sprechen auch die mittleren Winkel SNS, die in beiden Verbindungen 112.8 bzw. 113.2° betragen.

Die Kernabstände zwischen den Anionen von $NH_4[S_4N_5O]$ sind gleich oder größer als die van-der-Waals-Abstände (vgl. Tab. 4).

Wir danken dem Bundesminister für Wirtschaft (ERP-Sondervermögen), dem Verband der Chemischen Industrie und der Farbwerke Hoechst A. G. für die finanzielle Unterstützung dieser Untersuchung.

[82/76]

¹⁰⁾ E. R. Lippincott und M. C. Tobin, J. Chem. Phys. 21, 1559 (1953).

¹¹⁾ J. Bragin und M. V. Evans, J. Chem. Phys. 51, 268 (1969).

¹²⁾ R. Steudel, unveröffentlichte Ergebnisse.